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Abstract. Planetary rovers are small unmanned vehicles equipped with cameras 
and a variety of sensors used for scientific experiments. They must operate under 
tight constraints over such resources as operation time, power, storage capacity, 
and communication bandwidth. Moreover, the limited computational resources 
of the rover limit the complexity of on-line planning and scheduling. We de- 
scribe two decision-theoretic approaches to maximize the productivity of plane- 
tary rovers: one based on adaptive planning and the other on hierarchical rein- 
forcement learning. Both approaches map the problem into a Markov decision 
problem and attempt to solve a large part of the problem off-line, exploiting the 
structure of the plan and independence between plan components. We examine 
the advantages and limitations of these techniques and their scalability. 

1 Towards Autonomous Planetary Rovers 

The power of a mobile platform to perform science and explore the surface of distant 
planetary surfaces has long attracted the attention of the space exploration community. 
Unmanned rovers have been deployed on the Moon and on Mars, and they have been 
proposed for exploring other planets, moons, and small bodies such as asteroids and 
comets. The challenges and goals of planetary exploration pose unique constraints on 
the control of rovers, constraints that differentiate this domain from others that have 
traditionally been considered in mobile robotics. In addition, operation of a rover on a 
planetary surface differs significantly from operation of other distant spacecraft. 

In this paper, we describe the problem of rover control and illustrate its unique as- 
pects. We show how these characteristics have led us to consider utility as a fundamental 
concept underlying planetary exploration; this in turn directed our attention and effort 
to decision-theoretic approaches for planetary rover control. We will survey these ap- 
proaches, particularly concentrating on two methods: one based on adaptive planning 
and the other on hierarchical reinforcement learning. 

A planetary rover is first and foremost a science tool, carrying a suite of instruments 
to characterize a distant environment and to transmit information to Earth. These instru- 
ments may include cameras, spectrometers, manipulators, and sampling devices. Under 
some level of control from Earth-bound scientists and engineers, the rover deploys the 
instruments to gain information about the planetary surface. For example, in the Mars 
Smart Lander mission, currently planned for 2009, a rover will traverse a few kilome- 
ters between scientifically interesting sites. At each site, the rover will visit a number 



of targets (typically rocks) and deploy instruments on each one. In the current mission 
scenario, the targets and rover actions will be completely specified by scientists and 
rover engineers. The work presented in this paper would enable the rover to perform 
many of these steps autonomously. 

The level of success of a rover mission is measured by the “science return,” or 
amount of useful scientific data returned to the scientists on Earth. Although it is diffi- 
cult to measure concretely, some attempts have been made to characterize it precisely 
for particular scenarios [30]. Criteria such as rover safety, navigation accuracy and 
speed, data compression ratios, and resource management contribute to science return. 
An important characteristic of using science return as a mission success criterion is that 
it is a quantity to be maximized, not a discrete goal to be achieved. This differs markedly 
from traditional applications of planning technology to mobile robotics. From the early 
days of planning, applications to robotics have typically concentrated on achieving dis- 
crete goals [ 18, 15,281. More recently, decision-theoretic planning has extended beyond 
all-or-none goals to handle overall reward [21,29], offering a more suitable framework 
for planetary rover control. 

Autonomous control of rovers on distant planets is necessary because the round- 
trip time for communication makes tele-operation infeasible. Many earth-based rovers, 
as well as lunar rovers to a certain extent, can be controlled via tele-operation, using 
advanced user interfaces to compensate for latency in communication links [ 11,1]. For 
Martian or other distant planetary exploration, the latency increases beyond the limits 
of tele-operation. In addition, because of constraints on communication resources and 
cost, currently envisioned missions will limit communications to once or twice daily. 
Between these communication opportunities, the rover must operate autonomously. 

An important and distinctive feature of planetary robotics, and a challenge for au- 
tonomous operations, is uncertainty. With planetary rovers, there is uncertainty about 
many aspects of sequence execution: exactly how long operations will take, how much 
power will be consumed, and how much data storage will be needed. Resources such 
as power and data storage are critical limits to rover operations; resource limits must 
be respected, but unused resources generally translate to wasted mission time and thus 
decreased productivity. Furthermore, there is uncertainty about environmental factors 
that influence such things as rate of battery charging or which scientific tasks are possi- 
ble. In order to allow for both sources of uncertainty, a traditional spacecraft command 
plan is conservative: only limited operations are allowed within a single uplink, time 
and resource usage are based on worst-case estimates, and the plan contains fail-safe 
checks to avoid resource overruns. If an operation takes less time than expected, the 
rover waits until the time prescribed for the next operation. If an operation takes longer 
than expected, it may be terminated before completion; in some cases, all non-essential 
operations may be halted until a new command plan is received. These situations result 
in unnecessary delays and lost science opportunities. 

An example is the Mars Smart Lander mission, where the rover will visit at most 
one target in a single uplink, and in fact the rover will only approach a target and place 
an instrument before waiting for the next command plan [22]. Although conservative, 
this is still an advance over previous rovers (Sojourner [23] or the 2003 Mars Explo- 
ration Rovers), which required multiple days to accomplish as much. The techniques 
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Fig. 1. Increasing levels of capability for planetary rovers. 

described in this paper provide the rover with the ability to select and balance tasks 
across multiple targets, allowing more ambitious exploration. 

The highly uncertain operational environment distinguishes rover control from other 
spacecraft control. A deep space probe works in a harsh but stable environment, and its 
actions have relatively predictable effects, barring anomalies. Planning procedures de- 
signed for spacecraft [25,17] do not explicitly handle all the types of uncertainty; appli- 
cations of these technologies to the problem of rover control [ 141 rely on the presence 
of planners on board to replan when execution diverges from a single nominal plan. 

The computational power of planetary rovers is also severely limited by the use of 
radiation-hardened, low-power processors and electronics. Increases in processor per- 
formance are more than made up for by the desire for increased on-board processing of 
images and science data, as well as improved navigation. In addition, the processor is 
a draw on the overall power budget. Thus control approaches that minimize on-board 
computation are preferable. 

Constrained by action and environmental uncertainty, and limited computational 
resources, our objective is to increase the science productivity possible within a single 
uplink. To this end, we are pursuing a program of increasing capabilities, illustrated 
in Figure 1 .  Starting from the capabilities of the Sojourner rover, which used detailed, 
time-stamped scripts of low-level commands, we are moving toward autonomous goal 
selection and ordering. The latter is the main focus of this paper. Before presenting that 
work, we first review the steps along this spectrum of capabilities. 

In all past and currently planned missions, the command plans for the rover are 
completely specified on the ground. In this case, additional flexibility in terms of time 
and state conditions, as well as contingent branches, may allow a wider range of behav- 
iors than fixed-time sequences [6]. Additional capability can be realized by calculating 
utilities of plan branches with respect to the situation at execution time [7]. If we allow 
limited innovation on board, the rover can adapt its plan to the situation by skipping 



Fig. 2. The K9 Rover. 

steps or merging in plan fragments from a plan library constructed and verified on the 
ground [8]. 

The capabilities described to this point make use of plans that have been pre- 
specified to full detail. To specify plans at a higher level of abstraction, such as desired 
science targets, the decomposition of the high-level tasks into detailed actions must 
be performed on board in a way that is sensitive to the execution context. Decision- 
theoretic planning and control methods can perform this dynamic choice to maximize 
science return. 

If science targets are considered individually, the problem is a local problem of tusk 
selection. The control problem in this case is to decide which experiments to perform 
and when to move to another target [3]. The latter depends on the expected information 
to be gained from other targets and the difficulty of reaching them. The former depends 
on the available resources as well as characteristics of the target. 

Alternatively, we may reason about a group of targets together; in planetary ex- 
ploration this is often referred to as a site. By considering the activities within a site 
together, the overall science return can be improved compared to target-specific control 
policies. It is at this level of capability that we concentrate for the remainder of the 
paper. 

The planning and execution techniques described in this paper allow the rover to 
re-prioritize and reorder scientific activities based on progress made, scientific observa- 
tions, and the success or failure of past activities. The solution relies on off-line anal- 
ysis of the problem and on pre-compilation of control policies. In addition, we have 
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Fig. 3. Layers of rover software in the existing K9 rover software architecture. 

used the independence between various mission tasks and goals to reduce the com- 
plexity of the control problem. The rest of the paper is organized as follows. Section 
2 sketches the multiple layers of control and the way the decision-theoretic planning 
component interacts with the lower-levels. The section also provides a general intro- 
duction to decision-theoretic control and the two approaches we have developed. These 
approaches, adaptive planning and hierarchical reinforcement learning are detailed in 
sections 3 and 4. We conclude with a discussion of the merits of these two approaches 
and future work. 

2 Layers of Control 

The focus of this paper is on high-level, decision-theoretic control. However, the decision- 
theoretic component does not interact directly with the rover’s actuators. It rests on a 
number of existing layers of control, which bridge the gap between decision-theoretic 
plans and the low-level control of the robotic mechanisms. In this section we describe 
the entire control architecture and the experimental platform for which it has been de- 
veloped. 

We are targeting our work for the NASA Ames “K9” rover prototype, pictured in 
Figure 2. The existing rover software architecture in place on the K9 rover consists 
of four distinct layers, as shown in Figure 3. Low-level device drivers communicate 
with hardware. Mid-level component controllers receive simple commands (such as di- 
rect movement, imaging, and instrument commands) and communicate with the device 
drivers to effectuate the commands. Abstract commands implement compound or com- 
plex actions (such as movement with obstacle avoidance, visual servoing to a target, 



and arm placement). A plan executive interprets command plans and calls both simple 
and abstract commands as specified in the plan. For more details on this architecture, 
see [ 91. 

A high-level, decision-theoretic controller interacts with this architecture by propos- 
ing high-level actions, potentially more abstract than commands within the architecture. 
The high-level actions are then decomposed into small command plans; these command 
plans are provided to the rover plan executive, which in turn manages the execution and 
monitoring of the low-level commands within the command plans. Information about 
success of the high-level action and the resulting state of the system is returned to the 
decision-theoretic controller at the end of execution of each command plan. 

The rover control problem, at the level that we are addressing, consists of a set of 
science-related goals. These science goals identify a set of targets, each of which has 
particular scientific interest. The rover has a set of instruments available, and thus a set 
of possible experiments, to gather relevant information about the targets. Given the set 
of targets and desired information, the rover's task is to choose activities that provide the 
maximum information possible about the targets within resource and time constraints 
and to return that information to the scientists. 

3 Decision-Theoretic Control 

The high-level control of the rover presents a sequential decision problem under uncer- 
tainty. At each point, the rover must select the next action based on the current state 
and the remaining plan. The state in this case includes both features characterizing 
the environment and features characterizing the rover itself, such as an indication of 
the remaining resources. Such problems can be modeled as a Markov decision pro- 
cess (MDP), assuming that each action transforms the current state into one of several 
possible outcome states with some fixed transition probability. This assumption is also 
referred to as the Markov assumption. 

More formally, an MDP is defined by a finite set of states, S; a finite set of possible 
actions, A ;  and a transition probability function Pr(s'Is, a )  that indicates the probabil- 
ity that taking action a E A in state s E S results in a transition to state s' E S. Each 
transition has an associated reward, R ( s ,  a) ,  which can capture the cost of the action, 
the value of the outcome, or some combination of both. The objective is to maximize 
the reward over a finite- or infinite-horizon. In the later case, future reward is typically 
discounted by a factor of -y', where i is the number of steps. Partially-observable MDPs 
(or POMDPs) generalize the MDP model by allowing the agent to have only partial in- 
formation about the state. At the end of each action, the agent can make an observation 
o E R. A belief function over states can be maintained using Bayesian updating given 
the observation probability function, Pr(ols, a ) .  (In general, both transition probabili- 
ties and observation probabilities may also depend on the outcome state.) We limit our 
discussion in this paper to MDPs, which provide adequate model for high-level rover 
control. 

A solution to an MDP can be represented as a mapping from states to actions, 
?r : S + A ,  called a policy. Several dynamic programming algorithms (such as value 
iteration and policy iteration) have been developed for finding optimal control policies 



for MDPs [27,31]. It has also been shown that MDPs can be solved using heuristic 
search by such algorithms as LAO* [ 191. The advantage heuristic search has over dy- 
namic programming is that, given an initial state, it can find an optimal solution without 
evaluating the entire state space. Dynamic programming, in contrast, evaluates the en- 
tire state space, finding a policy for every possible starting state. For problems with 
large state spaces, heuristic search offers substantial computational savings. 

One important characteristic of the rover control problem is the explicit modeling 
of the amount of resources action use. Extensions of MDPs to handle duration of ac- 
tions have been previously studied. For example, in Semi-Markov Decision processes 
(SMDPs) actions can have stochastic durations and state transitions are stochastic [27]. 
In Stochastic Time Dependent Networks (STDNs) actions can have stochastic dura- 
tions, but state transitions are deterministic [34]. In Time-Dependent MDPs (TMDPs) 
actions can have stochastic, time-dependent durations and state transitions are stochas- 
tic [ 5 ] .  The model we use in this paper have both stochastic state transitions and actions 
that consume varying levels of resources (not just time). In this sense, the model is a 
proper extension of the previous ones. While modeling the consumption of resources 
by actions is not difficult, it increases the state space dramatically. The number of states 
grow linearly with the number of resource units (which could be large) and exponen- 
tially with the number of resources. However, resources have additional characteristics 
that simplify their treatment: all the units of a resource are typically exchangeable, the 
number of units goes down as they are consumed (unless the resource is renewable), 
and the amount of resources used by an action typically depends only on the action 
itself. Therefore, treating resources as just any other component of the state is wasteful. 

In the following two sections we examine two decision-theoretic techniques that 
take advantage of the unique characteristics of the rover control problem in order to 
simplify it. both approaches are based on modeling the rover set of activities as a 
loosley-coupled MDP. The scientific experiments the rover performs in each location 
are largely independent, but they share the same resources. The first approach develops 
a local policy for each activity that takes into account the remaining plan by computing 
a cost function over resources. By estimating quickly this cost function at run-time, we 
can avoid solving the entire MDP while producing near-optimal control policies. The 
second approach is based on a hierarchical reinforcement learning algorithm designed 
to take advantage of the natural decomposability offered by loosely-coupled MDPs. 
It maintains two different value functions: a low-level state-action value function de- 
fined over all state-action pairs and a high-level state value function defined only over 
“bottleneck” states that bridge the components of the MDP. 

The two approaches share the ability to accelerate policy construction by exploiting 
the structure of the MDP, but they offer different advantages and disadvantages. The 
first approach exploits a model of the domain and allows for off-line policy construction 
and compact policy representation, both important issues in rover control. The second 
approach is model free and is particularly suitable for operation in poorly modeled 
environments or for adaptation of an existing policy to new environments. The next two 
sections describe the two approaches and examine their characteristics. 



4 Adaptive Planning Approach 

The adaptive planning approach is based on off-line analysis of each possible rover 
activity and construction of policies for each possible activity using dynamic program- 
ming. The key question is how to adapt pre-compiled policies at run-time to reflect the 
dynamic execution state of the plan. The dynamic information includes the remaining 
workload and the remaining resources, both of which can be captured by the notion of 
opportunity cost. 

Each plan assigned to a rover is composed of a sequence of target activities repre- 
sented as progressive processing task structures [24,35]. An initial resource allocation 
is also specified. Resources are represented as vectors of discrete units. We assume here 
that the plan is totally ordered and that resources are not renewable. A generalization of 
the technique to acyclic graphs has been examined in [lo]. 

4.1 The Rover Model 

The rover can perform a certain set of predefined activities, each of which has an asso- 
ciated fixed task structure. The task structure is represented as a progressive processing 
unit (PRU), which is composed of a sequence of steps or processing levels, ( 1 1 , l z ,  . . .). 
Each step, l i ,  is composed of a set of alternative modules, {mi, mf, . . .). Each module 
of a given step can perform the same logical function, but it has different computa- 
tional characteristics defined by its descriptor. The module descriptor, P/ ( (q ’ ,  Ar)Iq), 
of module mi is the probability distribution of output quality and resource consump- 
tion for a given input quality. Module descriptors are similar to conditional performance 
profiles of anytime algorithms. 

When the rover completes an activity, it receives a reward that depends on the qual- 
ity of the output and the specific activity. Each PRU has an associated rewardfunction, 
U ( q ) ,  that measures the immediate reward for performing the activity with overall qual- 
ity q. Rewards are cumulative over different activities. 

Given a plan, a library of task structures that specify a PRU for each activity in the 
plan, the module descriptors of all the components of these PRUs, and corresponding 
reward functions for each activity, we want to select the best set of alternative modules 
to maximize the overall utility or scientific return of the rover. 

4.2 Optimal Control of a Single Activity 

We begin with the problem of meta-level control of a single progressive processing unit 
corresponding to a single activity. This problem can be formulated as a Markov deci- 
sion process (MDP) with states representing the current state of the activity. The state 
includes the current level of the PRU, the quality produced so far, and the remaining 
resources. The rewards are defined by the utility of the solution. The possible actions 
are to execute one of the modules of the next processing level. The transition model is 
defined by the descriptor of the module selected for execution. 



State transition model. The execution of a single progressive processing unit can 
be seen as an MDP with a finite set of states S = { [ l , ,q , r ] } ,  where i indicates the 
last executed level, q is the quality produced by the last executed module, and r is the 
remaining resources. When the system is in state [l,, q, r ] ,  one module of the i-th level 
has been executed. (The first level is i = 1; i = 0 is used to indicate the fact that no 
level has been executed.) 

The initial state of the MDP is [lo, 0, r] ,  where r is the available resources for plan 
execution. (Additional resources may be reserved for rover operation once execution 
of the plan is complete.) The initial state indicates that the system is ready to start 
executing a module of the first level of the PRU. The terminal states are all the states of 
the form [ l ~ ,  q, r] ,  where L is the last level of the PRU. In particular, the state [ l ~ ,  0, 7-1 

represents termination with no useful result and remaining resources r. Termination 
with r = 0 is also possible; if that happens during the execution of an intermediate 
level of the PRU, a last transition is made to the end of the PRU by skipping all the 
levels that cannot be performed. 

In every nonterminal state, [l,,  q, r ] ,  the possible actions, designated by E:,,, ex- 
ecute the j - t h  module of the next level. The outcome of action is probabilistic. 
Resource consumption and quality uncertainties define the new state as follows. 

Rewards and the value function. Rewards are determined by the given reward func- 
tion applied to the final outcome. Note that no rewards are associated with intermediate 
results, although this could be easily incorporated into the model. The value function 
(expected reward-to-go) over all states is defined as follows. The value of a terminal 
state is based on the utility of the results. 

V(VL9 Q, 7-11 = U ( q )  (2) 

This concludes the definition of a finite-horizon MDP, or equivalently, a state-space 
search problem that can be represented by a decision tree or AND/OR graph. It can be 
solved using standard dynamic programming or using a search algorithm such as AO*. 

Because the rover model satisfies the Markov property, it is easy to show that given 
an arbitrary PRU, an initial resource allocation and a reward function, the optimal policy 
for the corresponding MDP provides an optimal control strategy for the rover [36 ] .  

We note that the number of states of the MDP is bounded by the product of the 
number of levels, the maximum number of alternative modules per level, the number 
of discrete quality levels, and the number of possible resource vectors. While resources 
could vary over a wide range, the size of the control policy can be reduced by using 
coarse units. Therefore, unit choice introduces a tradeoff between the size of the pol- 
icy and its effectiveness. An implementation of the policy construction algorithm for 



problems that involve one resource confirms the intuition that the optimal policy can be 
approximated with a coarse resource unit [36]. This observation leads to a significant 
reduction in policy size and construction time. 

4.3 

Consider now the control of a complex plan composed of n + 1 PRUs. One obvious 
approach is to generalize the solution for a single PRU to sequences of PRUs. That is, 
one could construct a large MDP for the combined sequential decision problem includ- 
ing the entire set of n + 1 PRUs. Each state must include an indicator of the activity (or 
PRU) number, i,  leading to a general state represented as [i, I ,  q,  r ] ,  i E {0,1,. . . , n}. 
However, our objective is to eliminate the need to solve complex MDPs on-board by 
the rover. Transmitting to the rover a very large policy for the entire plan is also unac- 
ceptable. Instead, we examine a technique to factor the effect of the remaining plan on 
the current policy using the notion of opportunity cost. 

We want to measure the effect of the remaining n PRUs on the execution of the 
first one. This can be expressed in a way that preserves optimality while suggesting an 
efficient approach to meta-level control that does not requires run-time construction of 
the entire policy. 

Definition 1 L e t V * ( i , r )  = V([ i , Io ,O , r ] ) for i  5 n, andV*(n  + 1,r) = 0. V*( i , r )  
denotes the expected value of the optimal policy for the last n - i PRUs with resources 
r. 

Optimal Control of Multiple Activities Using Opportunity Cost 

To compute the optimal policy for the i-th PRU, we can simply use the following mod- 
ified reward function. 

(4) 

In other words, the reward for completing the i-th activity is the sum of the immediate 
reward and the reward-to-go for the remaining PRUs using the remaining resources. 
Therefore, the best policy for the first PRU can be calculated if we use the following 
reward function for final states: 

Ui(q,r) = Ua(q) + V * ( i  + 1,r) 

W Q , T )  = Vo(q) + V*(LT) ( 5 )  

Definition 2 Let OC(r, AT) = V* (1, T )  - V' (1, r - AT) be the resource opportunity 
cost function. 

The opportunity cost measures the loss of expected value due to reduction of Ar in 
resource availability when starting to execute the last n PRUs. 

Definition 3 Let the OC-policy for the$rst PRU be the policy computed with the fol- 
lowing rewardfunction: 

Ui(q,r) = Uo(q) - OC(r0,ro - .) 

The OC-policy is the policy computed by deducting from the actual reward for the first 
task the opportunity cost of the resources it consumed. 



Theorem 1 Controlling thefirst PRU using the OC-policy is globally optimal. 

Proof: From the definition of OC(r, Ar) we get: 

To compute the optimal schedule we need to use the reward function defined in Equa- 
tion 4 that can be rewritten as follows. 

UA(q,ro - AT) = Uo(q) + V*(l,ro) - OC(r0,Ar) (7) 

Or, equivalently: 

But this reward function is the same as the one used to construct the OC-policy, except 
for the added constant V*(l ,  TO). Because adding a constant to a reward function does 
not affect the policy, the optimality of the policy is preserved. 

Theorem 1 suggests an optimal approach to control an arbitrary set of n + 1 activ- 
ities by first using an OC-policy for the first PRU that takes into account the resource 
opportunity cost of the remaining n activities. Then, the OC-policy for the second PRU 
is used taking into account the opportunity cost of the remaining n - 1 activities and so 
on. 

4.4 Using Estimated Opportunity Cost and Precompiled Policies 

How can we exploit the modularity introduced in the previous section to meet the ob- 
jective of minimizing on-line planning? In particular, we want to avoid any complex 
procedure that involves computing the exact opportunity cost or re-constructing the 
corresponding OC-policies on-board. We also want to avoid constructing these policies 
at the control center because transmitting them to the rover is not feasible. Instead, a 
solution based on the following two principles has been developed [36]. 

1. A fast approximation scheme is derived off-line to estimate the opportunity cost of 

2. Pre-compiled policies are stored on-board to control each activity for different lev- 
an arbitrary given plan; and 

els of opportunity cost. 

We have examined several approaches to estimating the opportunity cost of one re- 
source. Function approximation techniques seem to be suitable for learning the oppor- 
tunity cost from samples of examples for which we can compute the exact cost off-line. 
In order to avoid computing a new policy (for a single PRU) each time the opportunity 
cost is revised, we can divide the space of opportunity cost into a small set of regions 
representing typical situations. For each region, an optimal policy is computed off-line 
and stored in a library. At run-time, the system must first estimate the opportunity cost 
and then use the most appropriate pre-compiled policy from the library. These policies 
remain valid as long as the overall task structure and the utility function are fixed. 



5 Hierarchical Reinforcement-Learning Approach 

Another approach to the rover control problem that exploits its MDP representation 
is based on hierarchical reinforcement learning [2]. There has been increased interest 
in recent years in classes of MDPs that are naturally decomposable and in developing 
special-purpose techniques for these classes [4]. The rover control problem can be mod- 
eled as a weakly-coupled MDP, which falls in this category. A weakly-coupled MDP 
is an MDP that has a natural decomposition into a set of subprocesses. The transition 
from one subprocess to another requires entry into one of a small set of bottleneck 
states. Because the subprocesses are only connected through a small set of states, they 
are “almost” independent. The common intuition is that weakly-coupled MDPs should 
require less computational effort to solve than arbitrary MDPs. 

The algorithm that was investigated is a reinforcement-learning version of a previ- 
ously studied planning algorithm for weakly-coupled MDPs [ 131. The planning algo- 
rithm is model-based, whereas the learning algorithm requires only information from 
experience trajectories and knowledge about which states are the bottleneck states. This 
can be beneficial for problems where only a simulator or actual experience are avail- 
able. The algorithm fits into the category of hierarchical reinforcement learning (e.g., 
[32]) because it learns simultaneously at the state level and at the subprocess level. We 
note that other researchers have proposed methods for solving weakly-coupled MDPs 
[ 16,20,26], but very little work has been done in a reinforcement learning context. 

The hierarchical algorithm has been compared with Q-learning; i t  is shown to per- 
form better initially, but it fails to converge to the optimal policy. Hence, the hierarchical 
approach could be beneficial in situations in which computation time is limited and a 
fast approximation of the optimal policy is needed. Surprisingly, a third algorithm which 
is given the optimal values for the bottleneck states at the start learns more slowly. We 
discuss this counterintuitive observation at the end of this section. 

5.1 Solving MDPs Using Reinforcement Learning 

Consider an MDP that contains a finite set S of states, with so being the start state. 
For each state s E S, A, is a finite set of possible actions. P is the table of transition 
probabilities, where P(s‘ls, a) is the probability of a transition to state s’ given that 
the agent performed action a in state s. R is the reward function, where R(s ,  a) is the 
reward received by the agent given that it chose action a in state s. In this section, 
we use the infinite-horizon discounted optimality criterion. Formally, the agent should 
maximize 

where -y E [0,1] is the discount factor. 
Algorithms for MDPs often solve for vuluefunctions. For a policy K, the state value 

function, V r ( s ) ,  gives the expected total reward starting from state s and executing T .  

The state-action value function, Q x ( s ,  a), gives the expected total reward starting from 
state s, executing action a, and executing T from then on. 



Reinforcement learning techniques are particularly useful when only a a simulator 
or real experience are available [3 11. With these techniques, experience trajectories are 
used to learn a value function for a good policy. Actions taken on a trajectory are usually 
greedy with respect to the current value function, but exploratory actions must also 
be taken in order to discover better policies. One widely-used reinforcement learning 
algorithm is Q-learning [33], which updates the state-action value function after each 
transition from s to s’ under action a with the following rule: 

where cr is the learning rate. 

5.2 

Consider an MDP with a state set S that is partitioned into disjoint subsets 4 , .  . . , S,. 
The out-space of a subset Si, denoted O(S;), is defined to be the set of states not in Si 
that are reachable in one step from some state in S;. The set of states B = O(S1) U 

U O(Sm) that belong to the out-space of at least one subset comprise the set of 
bottleneck states. If the set of bottleneck states is relatively small, we call the MDP 
weakly-coupled. 

In [ 131, the authors describe an algorithm for weakly-coupled MDPs that can be 
described as a type of policy iteration. Initially, values for the bottleneck states are set 
arbitrarily. The low-level policy improvement phase involves solving each subproblem, 
treating the bottleneck state values as terminal rewards. The high-level policy evaluation 
phase consists of reevaluating the bottleneck states for these policies. Repeating these 
phases guarantees convergence to the optimal policy in a finite number of iterations. 

The rules for backpropagating value information in the reinforcement learning algo- 
rithm are derived from the two phases mentioned above. Two benefits of this approach 
are that it does not require an explicit model and that learning can proceed simultane- 
ously at the high level and at the low level. 

Two different value functions must be maintained: a low-level state-action value 
function Q defined over all state-action pairs and a high-level state value function v h  
defined only over bottleneck states. The low-level part of the learning is described as 
follows. Upon a transition to a non-bottleneck state, the standard Q-learning backup is 
applied. However, when a bottleneck state s’ E B is encountered, the following backup 
rule is used: 

Reinforcement Learning for Weakly-Coupled MDPs 

where cq is a learning rate. For the purposes of learning, the bottleneck state is treated 
as a terminal state, and its value is the terminal reward. High-level backups occur only 
upon a transition to a bottleneck state. The backup rule is: 

v h ( s )  + vh(s)  f ah[R + ’?vh(s‘) - v h ( s ) ] ,  (12) 

where k denotes the number of time steps elapsed between the two bottleneck states, R 
is the cumulative discounted reward obtained over this time, and a h  is a learning rate. 



It is possible to alternate between phases of low-level and high-level backups or 
to perform the backups simultaneously. Whether either approach converges to an op- 
timal policy is an open problem. We chose the latter for our experiments because our 
preliminary work showed it to be more promising. 

1 1  8 1  medium 

5.3 The Rover Model 

3 m  

The rover control problem fits nicely the weakly-coupled MDP framework. In this sec- 
tion we evaluate the approach using a simple scenario. In this scenario, a rover is to 
operate autonomously for a period of time. As in Section 4, the overall plan is com- 
posed of a sequence of activities, each of which includes a set of data gathering actions 
with respect to a certain target. Each activity has an associated priority and estimated 
difficulty of obtaining the data. The rover must make decisions about which activities 
to perform and when to move from one target to the next. The goal is to maximize the 
value of the collected data over a given time period. 

The action set consists of taking a picture, performing a spectrometer experiment, 
and traversing to the next target in the sequence. Spectrometer experiments take more 
time and are less predictable than taking pictures, but they yield better data. The time 
to traverse between targets is a noisy function of the distance between them. The state 
features are the remaining time, the current target number (from which priority and es- 
timated difficulty are implicitly determined), the number of pictures taken of the current 
target, and whether or not satisfactory spectrometer data has been obtained. Formally, 
S = T x I x P x E, where T = (0 min, 5 min, . . . , 300 min} is the set of time values; 
I = {1,2,3,4,5} is the set of targets; P = {0,1,2} is the set of values for pictures 
taken; and E = {0,1} is the set of values for the quality of the spectrometer data. The 
start state is SO = (300,1,0,0). The sequence of targets used for our experiments is 
shown in Table 1. 

2 
3 
4 
5 

Table 1. The sequence of targets for the rover to investigate 

5 hard 5 m  
3 easy 7 m  
2 easy 3 m  
9 hard N/A 

A nonzero reward can only be obtained upon departure from a target location and 
is a function of the priority of the target and the data obtained about the target. The task 
is episodic with -y = 1. An episode ends when the time component reaches zero or the 
rover finishes investigating the last target. The aim is to find a policy that maximizes the 
expected total reward across all targets investigated during an episode. 

In order to see how this problem fits into the weakly-coupled MDP framework, 
consider the set of states resulting from a traversal between targets. In all of these states, 
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Fig. 4. Learning curves for Q-learning, hierarchical learning, and omniscient hierarchical learning 

the picture and spectrometer components of the state are reset to zero. The set B = 
T x I x (0) x (0) is taken to be the set of bottleneck states, and it is over this set that 
we define the high-level value function. Note that the bottleneck states comprise only 
300 of the problem’s 1,800 states. 

5.4 Experiments 

The hierarchical algorithm has been tested against Q-learning using the above scenario. 
In addition, we tested an algorithm that we call the omniscient hierarchical learning al- 
gorithm. This algorithm is the same as the hierarchical algorithm, except that the values 
for the bottleneck states are fixed to optimal from the start, and only low-level backups 
are performed. By fixing the bottleneck values, the problem is completely decomposed 
from the start. Of course, this cannot be done in practice, but it is interesting for the 
purpose of comparison. 

For the experiments, all values were initialized to zero, and we used e-greedy ex- 
ploration with E = 0.1 [31]. For the results shown, all of the learning rates were set to 
0.1 (we obtained qualitatively similar results with learning rates of 0.01,0.05, and 0.2). 
Figure 4 shows the total reward per episode plotted against the number of episodes of 
learning. The points on the curves represent averages over periods of 1000 episodes. 

A somewhat counterintuitive result is that the omniscient hierarchical algorithm 
performs worse than both the original hierarchical algorithm and Q-learning during 
the early stages. One factor contributing to this is the initialization of the state-action 



values to zero. During the early episodes of learning, the value of the “leave” action 
grows more quickly than the values for the other actions because it is the only one that 
leads directly to a highly-valued bottleneck state. Thus the agent frequently leaves a 
target without having gathered any data. This result demonstrates that decomposability 
does not always guarantee a more efficient solution. 

The second result to note is that the hierarchical algorithm performs better than Q- 
learning initially, but then fails to converge to the optimal policy. It is intuitively plausi- 
ble that the hierarchical algorithm should go faster, since it implicitly forms an abstract 
process involving bottleneck states and propagates value information over multiple time 
steps. It also makes sense that the algorithm does not converge once we consider that the 
high-level backups are offpoficy. This means that bottleneck states are evaluated for the 
policy that is being executed, and this policy always includes non-greedy exploratory 
actions. Algorithms such as Q-learning, on the other hand, learn about the policy that 
is greedy with respect to the value function regardless of which policy is actually being 
executed. 

6 Discussion 

We have described two decision-theoretic approaches to control planetary rovers. The 
two approaches share several characteristics: they both use an MDP representation of 
the control problem and they both exploit the fact that the plan components are only 
loosely-coupled. Both techniques use approximations; in previous experimentation with 
small scale problem instances, both produced near-optimal control. However, it is hard 
to predict how the optimality of the resulting control policies degrades with problem 
complexity and which one of the techniques will be more robust. This remains an open 
problem. 

Both of the techniques are designed to minimize the complexity of on-line planning, 
and they both rely on pre-computing and storing control policies on-board. The size of 
these control policies could be substantial, but the required space is significantly smaller 
than the space needed for a complete policy for the entire plan. One advantage of the 
adaptive planning approach is that the control policies can be applied to an urbirrury 
plan, as long as the plan components are defined using known PRUs. This is not the 
case with the hierarchical reinforcement-learning technique. However, the latter has the 
advantage of not relying on knowing the exact model of the environment. Moreover, 
learning could be used on-board to refine a pre-calculated policy and adapt i t  to the real 
environment of operation. 

A considerable amount of work remains to be done to examine the scalability of 
both solution techniques. In theory, if reinforcement learning is applied correctly, it can 
handle very large problems. However, in practice, this is a challenging problem. The 
scalability of the adaptive planning approach may be more predictable. We expect it 
to handle well larger plans in terms of the number of activities and their complexity. 
However, estimating the opportunity cost of multiple resources seems hard. The qual- 
ity of these estimates degrades as the number of possible activities grows. Resource 
costs, unfortunately, are not independent, leading to exponential growth in the number 
of necessary pre-compiled policies as the number of resources increases. 



Another important source of complexity comes from generalizing the topology of 
the plan, allowing cycles within an activity and partially-ordered activities in a plan. 
The utility of repeating an activity, such as taking pictures or collecting samples, is non- 
additive over the set of repetitions and may depend on the degree of success with pre- 
vious attempts. This could lead to a significant increase in the number of state variables 
of the MDP. Constructing policies for MDPs with cycles is harder, but this has been 
addressed effectively by existing dy namic-programming and reinforcement-learning al- 
gorithms. 

Introducing temporal and other constraints on activities is another important gener- 
alization that is the focus of current research. It would allow us to represent scientific 
or operational constraints on rover operations, such as illumination for imaging (or lack 
thereof for some spectral measurements), temperature for instrument performance, or 
pre-defined communication windows with Earth or orbiting relay satellites. Such con- 
straints introduce interaction between plan components that we managed to avoid so 
far. 

Yet another source of complication is partial observability of the quality of scientific 
data. If quality represents a simple aspect of the collected data, such as the resolution 
of an image, then we can assume that quality is fully observable. However, if we want 
to measure the actual quality of the scientific data, this can lead to additional tradeoffs 
in planning and execution. Estimating quality may be a non-trivial computational task 
that returns imperfect information. Integrating on-board data interpretation processes 
as part of the overall planning and control problem is another focus of current research 
efforts. 

The results surveyed in this paper are part of a long term research program to make 
planetary rovers more autonomous and more productive. It is important to maintain in 
this effort a delicate balance between the various objectives and to aim for an appro- 
priate level of autonomy for the task. Given the necessary interactions of the scientists 
with “their” rover on a planetary surface (to monitor the exploration and make ultimate 
determination of what is interesting), it does not seem necessary to give rovers a sin- 
gle goal, such as “find life” and leave it to its own devices. As rovers become more 
versatile and scientists produce more sophisticated science interpretation instruments 
and on-board analysis programs, we can imagine the level of autonomy increasing, re- 
quiring more sophisticated on-board planning and execution mechanisms. For the time 
being, the approaches we described match the level of autonomy needed to perform the 
mission efficiently and effectively. 
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